

NOAA Technical Memorandum NWS WR-210

HYDROTOOLS

and the second sec

.

Tom Egger National Weather Service Weather Service Forecast Office Boise, Idaho

January 1991

U.S. DEPARTMENT OF / COMMERCE

National Oceanic and Atmospheric Administration National Weather Service

NOAA TECHNICAL MEMORANDA m Sob r Service, Western Regi

a state in the second second

1

The National Westher Service (NWS) Western Region (WR) Subservies provides an inform medium for the documentation and quick dissemination of results not appropriate, or not y Inc runsonal weather Service (NWS) Western Region (WK) Subseries provides in a medium for the documentation and quick dissemination of results not appropriate, or ready, for formal publication. The series is used to report on work in progress, to technical procedures and practices, or to relate progress to a limited audience. These T Memorands will report on investigations devoked primarily to regional and local prob interest mainly to personnal, and hence will not be widely distributed. suits not appropriate, or not yet ees. to describ - Technical

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS. Our of-print memoranda are not listed.

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Western Region, Scientific Services Division, P.O. Box 11188, Federal Building, 125 South State Street, Salt Lake City, Utab 84147. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Information Service, U.S. Department of Commerce, Sills Building, 5285 Pert Royal Roed, Springfield, Virginia 22161. Prices vary for all paper copies; microfiche are \$3.50. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

- ŝ
- ß

- 17
- Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December 1965. Western Region Pre- and Post-PF-3 Program, December 1, 1965, to February 20, 1966. Edward D. Dismer, March 1966. Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams, Jr., April 1966 (Revised November 1967, October 1969). (PE-17800) Interpreting the RAREP. Harbert P. Benner, May 1966 (Revised January 1967). Some Electrical Processes in the Atmosphere. J. Latham, June 1966. A Digitalized Summary of Redur Echoes within 100 Miles of Secremento, California. J. A. Youngberg and L. B. Overaas, December 1966. An Objective Aid for Forecessing the End of East Winds in the Columbia Gorge, July through October. D. John Coparanis, April 1967. Derivation of Redar Horisons in Mountainous Terrain. Roger G. Pappes, April 1967. 21
- 22

ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM)

- Verification of Operation Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PB-176240) A Study of Winds in the Lake Meed Recreation Area. R. P. Augulis, January 1968. (PB-25
- A Study 177830) 26
- 29
- 177830) Weather Extremes. R. J. Schmidli, April 1968 (Revised March 1996). (PB86 177672/AS) Small-Scale Analysis and Prediction. Philip Williams, Jr., May 1968. (PB178425) Numerical Weather Prediction and Synoptic Meteorology. CPT Thomas D. Murphy, USAF, May 1968. (AD 673355) Precipitation Detection Probabilities by Salt Lake ARTC Radars. Robert K. Belseky, July control of March 1990. 31
- (PB 179084) 32
- Probability Forecasting-A Problem Analysis with Reference to the Portland Fire Weather District, Harold S. Aver, July 1968. (PB 179289)
- Temperature Trends in Secremento-Another Heat Island. Anthony D. Lentini, February 1969. (PB 183055) 35 37
- Disposal of Logring Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB 183057)
- The Man-Machine Mix in Applied Weather Forecasting in the 1970s. L.W. Snellman, August 40 1969. (PB 185068)
- 43 Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB 185762) Estimated Return Periods for Short-Duration Precipitation in Arizona. Paul C. Kangieser, 44
- Determined Addum Periods for Amori-Journan Precipitation in Aritona. Paul C. Angusser, October 1966. (PE 187783) Applications of the Net Rediometer to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. L. Yee and E. Bates, December 1969. (PB 190476) Samutical Analysis as a Flood Routing Tool. Robert J.C. Burnach, December 1969. (PB 46
- 47 188744)
- Tunnami, Richard P. Augulia, February 1970. (PB 190157) Predicting Precipitation Type. Robert J.C. Burnash and Floyd E. Hug, March 1970. (PB 48 49
- 1000621 60
- Statistical Report on As Wayne S. Johnson, April 902/ Listical Report on Asroallergens (Pollens and Molds) Fert Huachuca, Arizona, 1969. Yara S. Johnson, April 1970. (PB 191743) Stern Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. 51
- I Augion See State and Suit Foreigner a manual. Contrast of contrast of the second sec 52
- 193347) 54
- 55
- 56
- 193347) A Refinement of the Vorticity Field to Delineate Areas of Significant Precipitation. Barry B. Aronowitch, August 1970. Application of the SSARR Model to a Basin without Discharge Record. Vail Schermerhorn and Donal W. Kuehl, August 1970. CPB 194384) Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB 194389) Preliminary Report on Agricultural Field Burning vs. Atmospheric Visibility in the Willamette Valley of Oregon. Earl M. Bates and David O. Chilcote, September 1970. (PB 194710) 57
- Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October 1970. (COM 71 00017) 58
- 1970. (COM 71 00017) Application of PE Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM 71 00016) An Aid for Forecasting the Minimum Temperature at Medford, Oregon, Arthur W. Fritz, October 1970. (COM 71 00120) 700-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris 59 60
- 63
- October 1070. (COM 71 00120)
 O'Do-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris
 E. Woerner, February 1971. (COM 71 00349)
 Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971.
 Climate of Sarramento, California. Tony Martini, April 1990. (Fifth Revision) (PB89)
- 207781/AS)
- A Preliminary Report on Correlation of ARTCC Redar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM 71 00829) National Weather Service Support to Scaring Activities. Ellis Burton, August 1971. (COM 44 66
- 71 00956) 71
- Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Jr., Pebruary 1972. (COM 72 10453)
 Thunderstorms and Hall Days Probabilities in Neveda. Clarence M. Sakamoto, April 1972. (COM 72 1054) 74

75

.

Îs 🖬

15 1

- 76
- A Study of the Low Level Jet Stream of the San Josquin Valley. Ronald A. Willis and Philip Willisms, Jr., May 1972. (COM 72 10707) Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM 72 11140) A Study of Redar Echo Distribution in Arisona During July and Angust. John E. Hales, Jr., July 1972. (COM 72 11135) 77 78
- 80
- July 1972. (COM 72 11136) Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors. Earl T. Riddiough, July 1972. (COM 72 11146) Climate of Stochton, California. Robert C. Nelson, July 1972. (COM 72 10920) Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. Sakamoto, October 1972. (COM 72 10021) An Aid for Forecasting Summer Maximum Temperatures at Seattle, Washington. Edgar G. Johnson, November 1972. (COM 73 10150) Flash Flood Forecasting and Warning Program in the Western Region. Philip Williams, Jr., Chaster L. Glenn, and Roland L. Raets, December 1972, (Revised March 1978). (COM 73 10051) 81 82
- 10251)
- A comparison of Manual and Semiautomatic Methods of Digitizing Analog Wind Records. Glenn E. Rasch, March 1973. (COM 73 10669) Conditional Probabilities for Sequences of Wet Days at Phoenix, Arizona. Paul C. Kangieser, June 1020. (COM 78 1064) 83 86
- 87
- Conditional Probabilities for Sequences of Wet Days at Phoenix, Arizona. Paul C. Kangieser, June 1973. (COM 73 11264) A Refinement of the Use of K-Values in Forecasting Thunderstorms in Washington and Oregon. Robert Y.G. Lee, June 1973. (COM 73 11276) Objective Forecast Precipitation Over the Western Region of the United States. Julia N. Paegle and Larry P. Kiruluff. September 1973. (COM 73 11946/3AS) Arizona 'Eddy' Tornadoes. Robert S. Ingram, October 1973. (COM 73 10465) Smoke Management in the Willsmette Valley. Earl M. Bates, May 1974. (COM 74 11277/AS) 89
- 02
- 11277/AS) n of 500-mb Type Regression Equations. Alexander E. MacDonald, 93
- An Operational Evaluation of 500-mb Type Regression Equations. Alexander E. MacDonald, June 1974. (COM 74 11467/AS) Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California: John D. Thomas, August 1974. (COM 74 11555/AS) Climate of Flagtiaff, Arizona. Paul W. Sorenson, and updated by Reginald W. Preston, January 1987. (PBS' 143160/AS) Eastern Parcific Cut-Off Low of April 21-28, 1974. William J. Alder and George R. Miller, January 1976. (PB 250 711/AS) Study on a Significant Precipitation Episode in Western United States. Ira S. Brenner, April 1976. (COM 75 10719/AS) 94
- 95
- 96
- 97
- idy on a Significant Precij /6. (COM 75 10719/AS) 1976
- 1976. (COM 75 10719/AS) A Study of Flash Flood Susceptibility-A Basin in Southern Arizona. Gerald Williams, August 1975. (COM 75 11860/AS) A Set of Rules for Forecasting Temperatures in Napa and Sonoma Counties. Wesley L. Tuft, October 1975. (PB 245 902/AS) Application of the National Weather Service Flash-Flood Program in the Western Region. Gerald Williams, January 1976. (PB 253 053/AS) Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Montha. Christopher D. Hill, January 1976. (PB 252 866/AS) Forecasting the Mono Wind. Charles P. Rucha, Jr., February 1976. (PB 254 650) Use of MOS Forecast Parameters in Temperature Forecasting. John C. Plankinton, Jr., Mar Types as Aids in Using MOS PoPs in Western United States. Ira S. Brenner, August 1976. (PB 259 664) Other Kinds of Wind Shear. Christopher D. Hill, August 1976. (PB 260 437/AS) 99 102
- 103
- 104
- 106
- 107
- 108
- 109
- 110
- Forecasting North Winds in the Upper Secremento Valley and Adjoining Forests. Christopher E Fontana, September 1976. (PB 273 677/AS) Cool Inflow as a Weakening Influence on Eastern Pacific Tropical Cyclones. William J. Denney, November 1976. (PB 264 655/AS) The MAN/MOS Program. Alexander E. MacDonald, February 1977. (PB 265 941/AS) Winter Sesson Minimum Temperature Formula for Bakersfield, California, Using Multiple Regression. Michael J. Oard, February 1977. (PB 273 694/AS) Tropical Cyclone Kathleen. James R. Fors, February 1977. (PB 273 676/AS) A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB 288 847) The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-Value. R.F. Quiring, April 1977. (PB 272 831) Moisture Distribution Modification by Upward Vertical Motion. Ira S. Brenner, April 1977. 113
- 117
- 118
- (PB 268 740) uency of Occurrence of Warm Season Echo Activity as a Function of Stability uted from the Yucca Flat, Nevada, Rawinsonde. Darryl Randerson, June 1977. 119 Relative Frequency of Occurrence of Warm Se in diam C
- PB 271 290/AS) 121
- (PE 271 290/AS) Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucza Flat Weather Station. R.F. Quiring, June 1977. (PE 271 704/AS) A Method for Transforming Temperature Distribution to Normality. Morris S. Webb, Jr., June 1977. (PE 271 742/AS) 122
- 124
- June 1977. (PB 271 742/AS) Statistical Guidance for Prediction of Eastern North Pacific Tropical Cyclone Motion Part I. Charles J. Neumann and Preston W. Leftwich, August 1977. (PB 272 661) Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion -Part II. Preston W. Leftwich and Charles J. Neumann, August 1977. (PB 273 155/AS) Climate of San Francisco. E. Jan Null, February 1978. Revised by George T. Pericht, April Content Construction Content Science Construction of Science Construction Construction of Construction o 125 126
- 1988. (PB88 208624/AS) 127
- 1888. (17883 208024/AS) Development of a Probability Equation for Winter-Type Precipitation Patterns in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB 281 387/AS) Hand Calculator Program to Compute Parcel Thermal Dynamics. Dan Gudgel, April 1978. 128 (PB 283 080/AS)
- 129
- (FE 283 060/AS) Fire whirls. David W. Goens, May 1978. (PB 283 866/AS) Fash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB 286 014/AS) Automated Fire-Weather Forecasts. Mark A. Mollner and David E. Olsen, September 1978. (PB 289 916/AS)
- 132
- (F) 200 910/AS) Estimates of the Effects of Terrain Blocking on the Los Angeles WSR-74C Weather Radar. R.G. Pappas, R.Y. Lee, B.W. Finke, October 1978. (PB 283767/AS) Spectral Techniques in Ocean Wave Ferscasting. John A. Jannuzzi, October 1978. 133

- 138
- (PB291317/AS) Solar Radiation. John A. Jannuzzi, November 1978. (PE291195/AS) Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lewvence P. Kierulff, January 1979. (PE29216/AS) Besic Hydrologic Principles. Thomas L. Districh, January 1979. (PE292247/AS) LFM 24-Hour Prediction of Eastern Pacific Orchoses Rafined by Satellite Images. John R. Zimmerman and Charles P. Ruscha, Jr., January 1979. (PE29424/AS) A Simple Analysis/Diagnosis System for Real Time Evaluation of Vertical Motion. Scott Heflick and James R. Fors, February 1979. (PE294216/AS) Alds for Ferecasting Minimum Temperature in the Wenatches Frost District. Robert S. Robinson, April 1979. (PE29423/AS) 139
- Monimor, April 1978. (PL290037AS)
 Monimor, April 1978. (PL290037AS)
 Influence of Cloudiness an Summertime Temperatures in the Eastern Washington Fire Weather district. James Holcomb, April 1979. (PE296574/AS)
 Comparison of LFM and MFM Precipitation Guidance for Nevada During Doreen. Christopher Hill, April 1979. (PE296613/AS)

NOAA Technical Memorandum NWS WR-210

HYDROTOOLS

Tom Egger National Weather Service Weather Service Forecast Office Boise, Idaho

January 1991

UNITED STATES DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary National Oceanic and Atmospheric Administration John A. Knauss, Under Secretary and Administrator National Weather Service Elbert W. Friday, Jr., Assistant Administrator for Weather Services

This publication has been reviewed and is approved for publication by Scientific Services Division, Western Region

Hen Mielke

Kenneth B. Mielke, Chief Scientific Services Division Salt Lake City, Utah

TABLE OF CONTENTS

,

I.	Introdu	action
II.	Enviro	nment, Setup, and Running Hytools 1
	How to	o Use HydroTools
Sheet	1.1	River Travel Time (Flow is Known) 4
Sheet	1.2	River Travel Time (Flow is Computed) 6
Sheet	2	Synthetic Unit Hydrograph 8
Sheet	3	Discharge: Given Area, Runoff, and Time 10
Sheet	4	Equivalent Rainfall
Sheet	5.1	Penman Evaporation Formula
Sheet	5.2	Estimating Solar Radiation 16
Sheet	6	Streamflow (Chezy-Manning) 17
Sheet	7	Reservoir Levels
Sheet	8	Max Breach Outflow (Dam Break)
Sheet	9	Make-a-Dam
Sheet	10.1	Runoff vs. Per Capita Water Consumption
Sheet	10.2	Where Is All My Water Going?

с

HYDROTOOLS

I. INTRODUCTION

The Service Hydrologist is called upon to answer a variety of hydrologic questions. HydroTools was developed to take advantage of the quick computing and "what-if?" capabilities of a spreadsheet to answer those questions. Though HydroTools was developed for the QUATTRO spreadsheet environment, it will run under 1-2-3 as well.

The Table of Contents lists various sheets. Instead of presenting the material in the form of chapters or topics, sheets were chosen because HydroTools is one large spreadsheet that runs several small sheets. Integrating all the small spreadsheets into a single large spreadsheet puts a great deal of computing power instantly at your fingertips.

The future of the NWS will bring the hydrologist and meteorologist professions closer together. The hydro toolkit is a device designed to help foster the merger. These sheets are not expected to replace the powerful modelling tools found at a typical RFC. Answers in these sheets are to be interpreted as <u>estimates only</u>. Probably the biggest benefit obtained in using these sheets will be the development of a better understanding of hydrology. For instance, do you know how long it would take to float river x for 10 miles? Sheet 1.1 can give you a rough idea. How about building a dam from a mud slide or ice jam; got any idea on the size and capacity of the resulting pool? HydroTools will likely stimulate many questions. A greater interest in and appreciation for hydrology should probably result.

On a personal note, this programmer was delighted with the speed and flexibility of programming in QUATTRO. The entire spreadsheet could have been written in a high level programming language like C, Basic, or FORTRAN, but experience shows the same results would have taken 10 to 20 times as long. Now that I have become heavily involved in spreadsheeting and really enjoy it, I, for one, will find it very difficult to write long computer codes to accomplish tasks that can be done so quickly and with so much fun. I am sold on spreadsheets!

Most of the formula used in the sheets were taken from Linsley/Kohler/Paulhus HYDROLOGY FOR ENGINEERS. The author welcomes comments and suggestions.

II. ENVIRONMENT, SETUP, AND RUNNING HYTOOLS

HydroTools is driven by QUATTRO or 1-2-3 on an IBM compatible machine running DOS 2.1 or higher. Needs: 512K of RAM, one floppy drive and a hard drive, a monochrome or color monitor. Although it is possible to setup Quattro or 1-2-3 on a dual floppy system with no hard drive, operation of the program is seriously degraded. No instructions are provided for non-hard drive users.

The distribution floppy should contain the following files:

HYTOOLS.WKQ - the QUATTRO spreadsheet version HYTOOLS.WK1 - the 1-2-3 spreadsheet version HYTOOLS.BAT - the QUATTRO/HYTOOLS start-up batch file HYTOOLS.DOC - the HydroTools User's Guide

1

For QUATTRO Users:

Setup is easy. Copy HYTOOLS.WKQ and HYTOOLS.BAT to your Quattro directory. If /QUAT is the Quattro directory, then follow this example:

Put the HYTOOLS floppy in the A: drive. From the A: prompt,

COPY HYTOOLS.WKQ C:\QUAT COPY HYTOOLS.BAT C:\QUAT

While in the \QUAT directory, type HYTOOLS. In a moment the HydroTools spreadsheet will appear on the screen. To set up the screen defaults for color or monochrome, activate one of the following macros:

ALT X - monochrome ALT Y - color

Unless you run the spreadsheet on a different monitor, the ALT-X or ALT-Y macros will not have to be run again. Proceed to the "How to Use HydroTools" section.

For 1-2-3 Users:

Copy HYTOOLS.WK1 to your 1-2-3 data directory. Bring up the 1-2-3 program, then select HYTOOLS.WK1 from the filer menu. In a few moments the spreadsheet will be on line. No provisions have been made to alter screen defaults using 1-2-3. Check your 1-2-3 User Manual for further details. Proceed to the "How to Use HydroTools" section.

How To Use HydroTools

ver. 3.7 HydroTools: Spreadsheet solutions to several hydrologic problems. Tom Egger / WSFO-Boise, Idaho / (208) 334-9860 Sheet 1-2....River Travel Time Sheet 2...... Synthetic Unit Hydrograph (Snyder Model) Sheet 3.....Discharge, Given: area, precip., time Sheet 4.....Equiv. Rainfall, Given: area, discharge, time Sheet 5-2.... Evaporation (Penman) Sheet 6.....Streamflow (Chezy-Manning) Sheet 7.....Reservoir Fill/Empty times Sheet 8..... Max Breach Outflow (Dam Break) Sheet 9.....Make a Dam (ice jam - earth slide) Sheet 10-2.... Per Capita Water Consumption <output cell> >input cell< Home key for menu page ... Page Up/Page Down keys to proper page (sheet). Arrow keys move to input cells. Do not use delete key in output cells.

If the above menu page is not what you now see, then hit the Home key on the number pad (make sure the Num Lock is not engaged). Anytime you get lost in the spreadsheet, just hit the Home key to return to the home page. On the home page you will find a list of sheets available in the tool kit, instructions on how to use the cursor keys, and reminder of input vs. output cell appearance.

Try moving the cursor with the cursor arrows. Notice the highlighted block moving around the screen. Notice a few sheets have a different numbering scheme: 1-2, 5-2.... Those sheets have side-pages as well. To get to a side-page just hold down Ctrl and the right arrow key on the number pad; to return: Ctrl left arrow. For now, let's just get used to moving around the sheets vertically.

Depress the Home key, then the Pg Dn key to page 1. Page down several times. Each page is a different sheet. Let's return to sheet 1 and begin doing some hydrology. Depress the Home key, then touch Pg Dn once.

A spreadsheet is interactive. You provide the data; the sheet does the computing. The only areas on the screen that can be changed or overwritten are the highlighted input cells enclosed in > < arrows. Move the cursor to the first input block on sheet 1.1. Turn to the Sheet 1 section of this manual.

To EXIT at any time: enter the following keystrokes /QY.

SHEET 1.1 RIVER TRAVEL TIME (flow is known)

	Q=A	V THERE	FORE V=Q/A	WHERE V=V Q=(VELOCITY NI CUBIC FEET/	LE/HR SEC
INPUT:	Q Ad Aw	=> =>	1200 <= cf 3 <= ft 200 <= ft	8 8	A=AREA IN Ad= averag Aw= averag	SQ. FT. e depth e width
5	н 1	dis	tance =>	4	<= miles	6 <= hour
OUTPUT:		Ç. S	•	ARRIVAL		DISTANCE
PCT ABOV		v	ELOCITY MI/HR	TIME		TRAVELLED
100	•	<	1.30	3.1		7.8 >
66	*	<	1.36	2.9		8.2 > se
50		<	0.82	4.9		4.9 >
25		<	0.27	14.7		1.6 >
00		<	0.07	58.7		0.4 >

PURPOSE:

To compute the amount of time to travel (float) a given stretch of river. Whether a chemical spill or someone that just wants to ride the river, knowing an estimate of the travel time is expected of a hydrologist. Your office may have thorough tables based on empirical studies. If it does not, Sheet 1.1 and 1.2 will provide useful estimates.

FORMULA USED:

Q = AV therefore V = Q/A

where

Q is flow in cfs V is velocity A is area cross section

The cross section A was broken down into a rectangle with depth Ad and width Aw. A trapezoid would have been more accurate, an ellipse even more. But they would not have been fun! The flow can usually be obtained or estimated from a nearby gauge. The average depth and width can usually be supplied by an observer where the spill occurred.

APPLICATION:

Move the cursor to the Q input block Q = > <= cfs. Using the number keys at the top of your keyboard (not the number pad keys), enter a flow in cfs, say 1350 cfs. Instantly the speed, arrival time, and distance travelled is computed. Changing the other input blocks will naturally result in different output values as well. For example, move the cursor to the distance block and enter 12 miles. Instantly the computed values change. The same thing occurs when the hours block is changed. Now enter the following values and see if we agree with Quattro:

Q	=	1200 cfs
Åd	=	3 ft
Aw	=	200 ft

distance = 4 miles hours = 6 hours

The computed velocity on the water surface is 1.30 mi/hr, the arrival time 4 miles downstream is 3.1 hours, and the distance travelled for 6 hours is 7.8 miles. Notice the other values for different levels above the stream floor. In particular, note the fastest water is below the surface at the .66 percent level above the floor. The slowest speed, of course, is along the bottom at

the 0.00 level. The table allows for vertical position only - not horizontal.

If no flow is available, then let the computer figure it - hold down the Ctrl key and the right arrow. Another spreadsheet! Sheet 1.2 - for computing travel times when the flow is not known.

SHEET 1.2 RIVER TRAVEL TIME (flow is computed)

_	n:>	0.050	<==	manning coef		
A	d =>	4	<= ft /- ft	Ad= average (lepth	
	lope:>	0.001	<= IU <==	ft./ft.	LUCH	
	А	istance =:	> 1	<= miles	24 <= hou	
OUTPUT:				- HTTCS	24 - 104	1
q		< 1628	> cfs est			
				a	1	
		· · · · · ·	ARRIVAL	DIST	ANCE	
PCT ABOVE		VELOCITY	TIME	TRAV	FLLED	
FLOOR		MI/HR	HOURS		IILES	
100	<pre> </pre>	1.76	0.6		42.2 >	
66	<	1.85	0.5		44.4 >	
50	<	1.11	0.9		26.6 >	
25	<	0.37	2.7		8.9 >	
•		0 00	10.0	the second se		·. •

PURPOSE:

Unlike Sheet 1.1, this sheet does not assume you know the flow in cfs. This version will compute the flow if the slope and Manning friction coefficient are known. An average Manning value would be .035; see Sheet 6 for further details on the Manning number. The slope of the stream can be derived from a good quad map.

FORMULA USED:

V = Q/A

where

Q is flow in cfs V is velocity A is area cross section

and

 $Q = (1.49/n)^*(AR^2/3)^*(S^1/2)$

where

n is the Manning Coef. A is the cross sectional area

R is the hydraulic radius

S is the slope of the river

Note: the ^ convention means "to the power of".

APPLICATION:

Move the cursor to the INPUT box that you would like to change. Enter an appropriate value. Watch the OUTPUT values change instantly. Try a high friction value, then a low one. Observe the changes velocity, arrival times, and distances travelled.

Suppose you get a call that a chemical spill has occurred on the Windy River at City X. State officials would like some estimates of when the pollutants would arrive at City Y, 25 miles downstream. They would also like to know how far down river the pollutants would be in 48 hours.

enter:

.035	Manning
4	Ad - average depth
200	Aw - average width
7/5280	slope (7 feet per mile)
25	distance in miles
48	hours elapsed time

Notice the slope was entered "as is" 7/5280 - let the computer compute .0013. The tabled values below will give you some rough estimates of the velocity, travel time, and distance travelled. Remember to advise the officials these values are <u>rough</u> estimates based on <u>average</u> values.

To move to any other sheet, hit the Home key first, then Pg Dn to the appropriate sheet.

SHEET 2 SYNTHETIC UNIT HYDROGRAPH

Sheet 2 -SYNTHETIC UNIT HYDROGRAPH - SNYDER MODEL INPUT: Basin:> Cottonwood Size (sq.miles):> 20 < sq mile Length of stream from outlet to divide:> 10 < miles 4 < miles Length of main stream fm outlet to centroid:> Slope & Storage -> Ct (1.8 <> 2.2):> 2.00 <Cp (.56 <>.69):> Flood Wave & Storage -> 0.63 < Unit Time:> 3 < hours Unit Rainfall:> 2 < inchesOUTPUT: Lag-to-Peak of Unitgraph: < 6.5 > hourstpR Peak discharge: < 122.6 > cfs/sq mi qpR Peak discharge at outlet: < -2452.6 > cfs QpR

PURPOSE:

To provide rough estimates of peak flow in cfs and the time to the peak flow, given basin geometry, time, and rainfall.

FORMULA:

4

Snyder's model was chosen:

$$tp = Ct(LLc)^{.3}$$

 $qp = CpA/tp$

where

- tp = lag time to peak discharge (lag is most frequently defined as time from the centroid of rainfall to the hydrograph peak)
- Ct = coefficient varying from 1.8 to 2.2 that compensates for slope and storage (steeper slopes get lower values)
- L =length of main stream from outlet to divide
- Lc = stream distance from outlet to a point opposite the basin centroid (center of area)

qp = peak flow

- \overline{Cp} = coefficient varying from .56 to .69 handles flood wave and storage factors
- A = area of basin in square miles

NOTE: Snyder's methods are the results of extensive studies in the Appalachian Mountain region. The formulas have been tried elsewhere with mixed success.

APPLICATION:

You know a little about the basins in your service area - the length, width, and size of the basins. Suppose 3 inches of rain fell in 2 hours over the Basin X. Using Snyder's technique, give an estimate of the peak flow and time to peak discharge for the basin.

given:

basin size	=	20 sq. miles
length of stream	=	10 miles
center of basin	=	4 miles
average slope & storage	=	2.0
average flood wave & storage	=	.63
unit time	=	2 hours
unit rainfall	=	3 inches

the computed answers:

lag-to-peak of unitgraph	=	6.5 hours
peak discharge at outlet	=	2452.6 cfs

Adjusting the input one way or the other will help to build a better understanding of unitgraphs and runoff vs. rainfall.

SHEET 3 DISCHARGE: Given area, runoff (inches) and time (days)

Sheet 3 -----DISCHARGE: Given area, rainfall (inches) and time (days). INPUT AREA SQ. MI. ===> 454 < SO. MI.INPUT PRECIP. INCHES ===> 35 < INCHES INPUT TIME IN DAYS => 365 < DAYS -OUTPUT: Q (flow) < 1,171 > CFS< 36,915,648,000 > TOTAL CF OUTPUT: volume 847,414 > ACRE FEET OUTPUT: volume < DISCHARGE: Given area, rainfall (inches) and time (hours). INPUT AREA SQ. MI. ===> 454 < SQ. MI.INPUT PRECIP. INCHES ===> 1 < INCHESINPUT TIME IN HOURS ===> 5 < HOURS **OUTPUT:** Q (flow) < 58,596 > CFS1,054,732,255 > TOTAL CF OUTPUT: volume < OUTPUT: volume < 24,212 > ACRE FEET

PURPOSE:

How much flow and what volume of water results from a given rainfall in inches? Remember: rainfall and runoff are two different quantities. In some areas, <u>very</u> little runoff results from a given rainfall.

FORMULA:

Q

$$= (Di*5280^{2}A)/(86400*Td*12)$$

and

Q = (A*Di*645.4)/Th

where

Q	=	flow in cf	8
Di	=	inches of	rainfall
•		•	• •

- A = area in sq. miles
- Td = time in days
- Th = time in hours

APPLICATION:

During the past three days, 5 inches of rain has fallen over the Payette Basin (454 sq. miles).

Given the above information, answer the following questions:

- 1. What is the average discharge (flow) of the original 5 inches?
- 2. What volume in acre feet could end up in reservoirs, if <u>all</u> the rainfall was runoff?

enter:

454 = area of basin in sq. miles 5 = inches of rain time = 5 days

computed answers:

flow 12,208 = cfs (entire basin, not just in river) volume = cf volume 121,059 = acre feet

Another What If?

Suppose half the basin had an average 3 inches of SWE (snow water equivalent) in snowpack. Very warm temperatures melted all the snow in 12 hours. What would be the most you could expect from a meltdown in local reservoirs (assume no evaporation or infiltration)?

ngan an ini i Saaditi an Anna

Using the lower part of the sheet for time period hours,

enter:

454/2 = area of basin in sq. miles 3 = inches of snowmelt 12 = hours

computed answers:

flow	36,623	=	cfs
volume	XXX	=	cf
volume	36,318	=	acre feet

11

SHEET 4 EQUIVALENT RAINFALL

Sheet 4 · EQUIVALENT RAINFALL: Given area, discharge (cfs), and time (days). INPUT AREA SO. MI. 454 < SQ. MI.INPUT DISCHARGE CFS 183 < CFS ===> 2 < DAYS INPUT TIME IN DAYS ===> OUTPUT: Di < 0.03 > EQUIV RAINFALL IN INCHES < 31,622,400 > TOTAL CUBIC FEET e 726 > ACRE FEET EQUIVALENT RAINFALL: Given area, discharge (cfs), and time (hours). INPUT AREA SQ. MI. ___> 20 < SQ. MI.INPUT DISCHARGE CFS ===> 163 < CFS INPUT TIME IN HOURS ===> 48 < HOURSOUTPUT: Di < 0.61 > EQUIV RAINFALL IN INCHES 28,166,400 > TOTAL CUBIC FEET < < 647 > ACRE FEET

PURPOSE:

To give an estimate of the equivalent rainfall from a given flow.

FORMULAS:

Di = $(84400*Td*Q*12)/(A*5280^2)$

where

Di = equiv. rainfall (discharge) in inches

- Td = time in days
- Q = flow in cfs
- A = area of basin in sq. miles

and

Di = $(86400*Th/24)*(Q*12)/(A*5280^2)$

where

Th = time in hours

Note: for easier comprehension, the formulas have not been reduced.

APPLICATION:

Runoff from recent rains caused an average increase in flow of 200 cfs in the Payette River for 15 days. What is the equivalent rainfall for a 500 sq. mile basin? Remember, unless the ground was impervious and there was zero evaporation, we are really estimating <u>runoff</u> in inches.

enter:

500 = area of basin in sq. miles 200 = discharge in cfs 15 = days

computed answers:

0.22	=	inches
259,200,000	=	total cubic feet
5,950	-	total acre feet

Ah, but the actual rainfall was 5 inches not 0.22 inches. Does that say something about antecedent soil conditions?

The same scenarios can be run on the bottom-half of Sheet 4 with a time period of hours.

SHEET 5.1 PENMAN EVAPORATION FORMULA

PENMAN EVAPORATIO	n form	ULA	(English	units))	
INPUT:						
DAILY MAX TMP	Tx	=>		90	<	<= <u>deg</u> F
DAILY MIN TMP	Tn	=>		70	<:	<= deg F
AVG DEW PT	Td	=>		45	<:	<= deg F
AVG WND SPD		=>		8	<:	<= mph
SOLAR RAD	Os	=>		440	<:	<= cal/cm^2/day
DAYS IN MONTH	-	=>		30	<:	<=
OUTPUT:						
AVG AIR TEMP	Ta	=>		80	>	> deg F
WIND MILE	Vp	=>		192	>	> est. miles per day
PAN	Εp		<	0.38	>	> inches/day
EVAP.	-	•	6	11.36	N	> inches/month
SHALLOW LK	El	•	<	0.27	>	> inches/day
EVAP.			< .	7.95	>	> inches/month

PURPOSE:

Compute evaporation for Class A pans and shallow lakes.

FORMULA: (as in Linsley/Kohler/Paulhus)

E = (delta + gamma))Qn + (gamma/(delta + gamma))Eawhere $Ea = ((es-ea)^{.88}) (.37+.0041vp)$ where $Qn = (2.81x10^{-4})Qs + (6.90x10^{-8})Qs(Ta)^{1.87} +$ (1.55×10^{-7}) Qs² - (3.14×10^{-11}) QS²(Ta-45)² - .040 $(es-ea) = (.0041Ta + .676)^8 - (.0041Td + .676)^8 Td > = 16^{\circ}F$ and delta = $(.00252Ta + .4149)^7$ Ta > = $-13^{\circ}F$ gamma = .011 in Hg/°F also · $delta/(delta+gamma) = [1 + .011/(.00252Ta + .4149)^7]^{-1}$ gamma/(delta+gamma) = 1 - delta/(delta+gamma)vp = wind movement miles per day $\overline{T}d = dew point ^{\circ}F$ Ta = air temp. °F QS = daily solar radiation in cal./sq cm

I bet you are wondering how all these equations fit into the few input and output cells indicated on Sheet 5.1. Well, they didn't.

I used a little of the side page. Development of this sheet was not as involved as it may appear. Transplanting textbook formulas is not hard, if you are careful.

APPLICATION:

Gathering all the input parameters should be easy except for average solar radiation. The following table may help.

	ES	TIMATED	SOLAR	RADIATION	(cal/cm	^2/day)	
Jun 22	300	430	525	500	450	400	325
Dec 22	390	220	110	20	ο	0	0
	0	15	30	45	60	75	90
Equator				Lat (°N)	North	Pole	

Suppose the following conditions existed on June 22:

enter:

90	= max temp
52	= min temp
45	= average dew-point
8	= average wind speed mph
500	= solar radiation
30	= days in June

the computed evaporations should be:

.34	= pan evap. inches/day
10.18	= pan evap. inches/month
.24	= shallow lake evap. inches/day
7.13	= shallow lake evap. inches/month

If you prefer to let the spreadsheet interpolate a value of solar radiation between dates, then use Spread 5.2 - the side page.

SHEET 5.2 ESTIMATING SOLAR RADIATION

Sheet 5.2 -----Estimating solar radiation for a given latitude: INPUT: (use Ctrl D for date input) Rad. on 12/22 > $50 < cal/ca^2/day$ (use table) r12 Rad. on 06/22> $500 < cal/cm^2/day$ (use table) r6 > 01/01/90 < (should be 01/01 of current year) January 1 Date to Compute > 06/22/90 < OUTPUT: Julian < 173 > day SINE < 1.00 > ESTIMATED SOLAR RAD < $500 > cal/cm^2/day$

PURPOSE:

Compute the Julian day, then estimate solar radiation.

FORMULA:

Julian day Sine	<pre>= today's date - January 1 (in Quattro) = used to interpolate solar radiation on days other than 12/22</pre>
Solar Radiation	& $6/22$ = ABS(@SIN(@RAD(360-(Julnday+9)/365)*360)/2)))) = SINE*(r6-r12)+r12

APPLICATION:

Find the ranges of solar radiation that apply to your latitude and enter for 12/22 and 06/22. If the January 1 date is not for this year, then change it to 1/1 of the current year (Ctrl D then 1/1). Using the Ctrl D entry mode for dates, enter the date to compute.

Example:

	50	rad on 12/22
	500	rad on 06/22
Ctrl D	1/1	January 1 this year
Ctrl D	3/15	Compute for this date

will compute the Julian day, sine of the day of the year, and estimated solar radiation for March 15.

SHEET 6 STREAMFLOW

Sheet 6 ~ STREAMFLO		Chezy-Manning Formula q= (1.49/n)(AR ² /3 * S ¹ /2)		
INPUT:			A= cross sec. area (sq ft)	
1			R= hydraulic radius (ft)	
n:>	0.035	<≖=	S = energy slope (ft/ft)	
av dpth:>	1	<==		
av wdth:>	. 50	<==	n values:	
<pre>slope:></pre>	0.014	<==	.018 smooth earth	
-			.020 firm gravel	
			.029 clean, strt, no pools, FS	
OUTPUT:			.035 weeds, stones, FS	
A= <	50	> sq ft	.039 winding, pools, clean, FS	
R= <	0.962	> ft	.042 like .029 but LS	
wet prm:<	52	> ft	.052 like .035 but LS	
			.112 very sluggish & weedy	
q= <	249	> cfs est.		
			NOTE: error of $.001 n = 3$ % g	

PURPOSE:

Compute streamflow in cfs, given slope, Manning friction coefficient, average depth, and average width of a river.

FORMULA:

The Chezy-Manning Formula

 $q = (1.49/n)(AR^2/3)(S^1/2)$

where

q = flow in cfs n = Manning coefficient A = cross sectional area R = hydraulic radius S = slope wet prm = wetted perimeter FS = full stage LS = low stage

NOTES:

- 1. The wetted perimeter is that portion of the stream channel in contact with the water.
- 2. The hydraulic radius is the cross sectional area divide by the wetted perimeter.

APPLICATION:

Assuming a gauging station is not available and the flow of a stream or river is needed; estimates of the flow can be made from the above formula. Varying any of the input parameters will affect the flow. See how juggling the input affects the output.

You just passed an ungauged stream on a field trip. The stream appeared to have a normal amount of rocks and vegetation along the channel, average depth was 2 feet, average width 80 feet, and from a quad map the slope is 40 feet per mile. What is the flow?

enter:

.035	= n
2	= avg. depth
80	= avg. width
40/5280	= slope

gan an an an

At the bottom of the screen the answer appears instantly. Suppose the depth was in question. Enter a range of values from 1.5 to 2.5. Notice the changes. Remember, you never need a calculator with a spreadsheet; the slope is entered "as is" 40/5280. Let your spreadsheet compute the value.

and the second second

SHEET 7 RESERVOIR LEVELS

Sheet 7		
RESERVOIR LEVELS:		
INPUT:		OUTPUT:
Current Volume:>		210,000 < ac ft
Capacity:>		280,000 < ac ft 75%> full
inflow (cfs):>		2 < cfs
outflow (cfs):>		0 < cfs
project days:>		0 < days
reservoir sfc area:>		25 < sq miles 16000 > acres
daily evaporation:>		0.20 < inches
OUTPUT:		
Daily increase:	<	4 > ac ft
Daily out (ac ft):	<	0 > ac ft
Daily loss to evap:	<	267 > ac ft
Net change:	<	-263 > ac ft
Volume:	<	210,000 > ac ft in > 0 days
days to empty:	<	799 > days
days to fill:	<	> days

PURPOSE:

Tedious arithmetic makes keeping track of our reservoir levels a cumbersome task. Sheet 7 turns the process into fun. This sheet will project a fill or empty time based on inflow/outflow or evaporation as a function of surface area. Use your results from Sheet 5 for the shallow lake evaporation rate.

FORMULA:

daily increase/decrease	= current volume * days *
	net change (in acre feet)
daily loss to evap.	= daily evap. * sfc area
	(convert volume to acre ft)

APPLICATION:

White Peak Reservoir holds 280,000 acre feet of water and has a surface area of 25 sq. miles. It's current volume is 210,000 acre feet. With 1230 cfs coming in and 1812 cfs going out. What will be the volume in 15 days? How long will it take to empty?

Suppose nothing was going in or out. How long will take to evaporate the reservoir with a daily evap. rate of .25 inches?

Would it be better, with respect to evaporation, to have a deeper reservoir or a shallower one? Juggle the surface area and find out.

If the basin was 800 sq. miles, how many inches of runoff would you need to fill White Peak Reservoir? Use Sheet 3 to determine the answer.

SHEET 8 MAX BREACH OUTFLOW (DAM BREAK)

Sheet 8 MAX BREACH	OUTFLOW DISCHA	RGE :		• ••••		
ATITN:	$(a,b) = (a^{*},b^{*})$			1.1	• • `	€ ^a
GIVER:	Qbmax=Qo+Br(C	:/(tf/60)+(C/h^2)) [^] 3		
	C=23.4As/Br			1943 		
INPUT:						
Reservoir s	urface area	>	3	<	As	acres
Avg final b	reach width	>	5 60	< <	h Br	feet
Time of Fai	lure	2	15	<	tf	minutes
Added 110W	•brrr\ carpras	-	.130	No. C	δo	CIN
OUTPUT:						
	Qbmax	<	794	>	cfs	n a stran de la seconda de En esta compositiva de la seconda de la se
$(w,v) = w(v_1,\ldots,w_{n-1},\ldots,v_{n-1},$	S				e., 11	2. N. W

PURPOSE:

A dam break, however remote, is always a possibility. Most large dams have Emergency Action Plans, so there is no need for max flow estimates. However, there are many dams that have no studies for max flow. Also, what about all the potential dams resulting from an earth slide or ice jam. Do you have a feel for the max flow that would result from a breach? Sheet 8 will give you estimates.

FORMULA:

The Broad-Crested Weir Equation:

 $Qbmax = Qo + Br(C/(tf/60) + (C/h^2))^3$

where

C = 23.4AS/Br

APPLICATION:

The person reporting a dam failure usually has the vital statistics of the dam that you need to run the model. Probably the toughest statistic to get would be the surface area. See Sheet 9 Make-a-Dam for surface area estimates.

Example:

A small power dam along the Boise River is getting ready to fail. Failure time is estimated on the scale of weeks. A site inspection revealed the following observations and possibilities: surface area of pool behind dam = 5 acres maximum depth of pool above breach = 10 feet average final breach width = 60 feet failure time = 15 minutes added flow through spillway = 150 cfs

(obsvd.) (1 possibility) (1 possibility) (5 minutes to several hours) (given)

With the following list of inputs, a single estimated value will quickly appear in the output section of the sheet. Make a note of this input vs. out. Enter several other possibilities. It may never happen but at least you will have something.

SHEET 9 MAKE-A-DAM

Sheet 9					a dada sa
MAKE-A-D	AM: (determine from ice	volume jam or	of resulti earthslide	ng wedge-shaped across river.)	reservoir
INPUT:				the second s	and the second second
	height of dam:	>	10	<= feet	
	width of dam:	>	1200	<= feet	
1.2	slope of river:	>	0.0114	$\leq ft/ft$	
	flow into dam:	>	450	< = cfs	
OUTPUT:					
	length of pool:	<	880	> = feet	
	length of pool:	<	0.17	> = miles	
	volume of pool:	<	5.280.000	> = cn ft	
	volume of pool:	<	121	> = acre ft	
	pool sfc area:	<	24	> = acres	
	full pool time	:<	3.26	> = hours	.1 days

PURPOSE:

Rivers can be dammed-up from a variety of causes; mud slides, log jams, and ice jams, to name a few. This sheet was designed to answer several questions regarding the pool that forms behind the dam; its volume, surface area, and length. Answers to all those questions are vital to flood and flash flood planning.

FORMULA:

A wedge-shaped reservoir is the design pool.

length of pool = height * (1/slope)
volume of pool (wedge) = .5 * ht. * length * width
sfc area (acres) = length * width/43560

APPLICATION:

A mud slide has caused a 30 feet dam across the Payette River. The dam is 600 feet wide. Slope from a quad map is 50 feet/mile. Current flow is 450 cfs. Estimate the length of the pool, volume, surface area, and time to fill.

enter:

30	= height in feet
600	= width of dam
50/5280	= slope
450	= flow into dam

The answers could help you decide several things:

- 1. The area above the dam for a flood watch/warning.
- 2. Spill over and possible breach time.

SHEET 10.1 RUNOFF VS. PER CAPITA WATER CONSUMPTION

```
Sheet 10.1 -
RUNOFF VS. PER CAPITA WATER CONSUMPTION:
INPUT:
                  annual runoff: >
                                                     1 < = inches
                     basin size: >
                                                 4000 < = sq. miles
   per capita water consumption: >
                                                  150 < = gal/person/day
OUTPUT:
 millions of gallons/basin/year: <
                                                9,293 > = mil. gallons
            gallons/person/year: <
                                               54,750 > = gallons
number of people basin supports: <
                                              169,732 > = people
```

PURPOSE:

Determine the number of people a basin can support given runoff in inches and per capita consumption.

FORMULA:

millions of gal/basin/year = runoff inches * 2323200 * sq. miles / 10⁶ gallons/person/year = per cap wtr consum. * 365 people basin supports = (mil. gals. / gal/pers/year) * 10⁶

APPLICATION:

A new city is being planned in a dry region. Runoff is only 1 inch/year. If every drop in the 400 sq. mile basin went into home use, how many people could the basin support?

annual runoff = 1 inch basin size = 400 sq miles per capita water consum. = 150 gals./person/day

What if the community was conservative and only used 125 gallons/person/day?

SHEET 10.2 WHERE IS ALL MY WATER GOING?

Sheet 10.2	
WHERE IS ALL MY WATER GOING?	and a standard standa
A STANPUT: State State State	CONSUMPTION
people in household:	4 < = 5 or older
no. weeks to water lawn:	: > 0 < = weeks
water the lawn (nozzle wide open):	> 0 < = hours/week 0
baths:	> 1 < = no./wk/person 20
3-minute showers:	> 7 < = no./wk/person 560
toilet flushes:	> 5 < = no./day/person 100
run dishwasher:	> 1 < = no./day 5
wash dishes by hand:	> 3 < = no. times/day 33
no. large laundry loads:	> 8 < = no./week 96
Wash Car:	> $1 < = no./week$ 12.5
Elsc./day:	> 0 < = gal/day 0
OUTPUT:	> $0 < = gal/month$ 0
Water consumption: < 23	6 > gal/day no watering
: < 1,65	5 > gal/wk no watering
: < 7,09	1 > gal/mon no watering
: < 84,14	3 > gal/yr no watering
	3 > gal/yr no watering

PURPOSE:

Per capita water consumption described in 10.1 can be determined using a sheet similar to 10.2. The real purpose of "Where is all my water going?" was to give Quattro users a chance to experiment with spreadsheet development.

The answers above were based on a "typical" American home - the Egger house. Whenever you are brave enough, the basic values that go into each formula can be adjusted for your household.

FORMULA:

water the lawn	= >	600 gal * hours per week
bath	=>	20 gal * number * persons
3-minute showers	=>	5 gal * number * persons
toilet flushes	=>	5 gal * number * persons
dishwasher	=>	5 gal * number per day
hand dishwash	= >	11 gal * number per day
large laundry loads	=>	11 gal * number per week
car wash	=>	12.5 gal * number per week

The consumption numbers appearing along the right margin of the sheet are the results of the above formula. The total water consumption formulas at the bottom of the sheet are summations of the above with appropriate multipliers for the respective time period.

APPLICATION:

The purpose of this sheet was to get your feet wet with spreadsheeting (Quattro users only). Instead of entering numbers and watching the results, let's adjust the formula to fit your home. By the way, I noticed an error in one of the formulas. While we are at it, let's fix it. Before we begin editing the spreadsheet, turn on the column and row headers and turn protection off. To make this easy, I developed a macro - ALT E.

Turn off protection, turn on cell labels, and prepare to edit.

ALT E

Move the cursor to cell O206 (column O and row 206), you are going to fix my mistake, then we'll go into edit/fix mode with the F2 function key.

F2

Notice the formula in the upper right hand corner of the screen. It should appear as +L207*20. This means, take the contents of cell L207 and multiply it by 20. To put another way, multiply the number of baths per week per person times 20 gallons. The error was neglecting to multiply by the number of people in the family (L204). You are in the edit mode. Type this now *L204.

*L204

The upper right should now appear as +L207*20*L204. Hit enter.

Enter

The formula has changed; so should the answers. Any of the formulas can be adjusted by moving through the locate, F2, edit, enter steps.

The formulas mentioned earlier have constants in them. I invite you to adjust the constants to suit your home. When you are all done, return HYTOOLS to its original configuration.

ALT X for monochrome screens or ALT Y for color screens

Remember, to EXIT HYTOOLS at any time enter the following keys /QY.

.

10 C 10 C

ميايين ا ميناور

- The Usefulness of Data from Mountaintep Fire Lookout Stations in Determining Annospheric Stability. Jonatham W. Corry, April 1979. (PB298899/AS)
 The Depth of the Marine Layer at San Disgo as Related to Subsequent Cool Sesson Precipitation Episodes in Arizona. In S. Brenner, May 1979. (PB298317/AS)
 Arizona Cool Sesson Climatological Surface Wind and Pressure Gradient Study. Ira S. Brenner, May 1979. (PB298900/AS)
 The BART Experiment. Marris S. Webb, October 1979. (PB29817/AS)
 Torscans and Distribution of Flash Floods in the Western Region. Thomas L. Dietrich, December 1979. (PB30 160344)
 Misinterpretations of Precipitation Probability Forecasts. Allan H. Murphy, Sarah Lichtenstein, Baruch Flashhoff, and Robert L. Winkler, February 1980. (PB80 174576)
 Annual Data and Verification Tabulation Eastern and Central North Pacific Tropical Sortes and Hurriness 1979. Emil B. Gunther and Staff, EPHC, April 1980. (PB80 20406)
 MMC Model Performance in the Northesst Pacific. James E. Overland, PMEL-ERL, April 1980. (PB80 196033)
 Climate of Salt Lake City, Utah. Wilbur E. Figgins (Retired) and Alexander R. Smith.
- 1980. (PB80 19603) Climate of Salt Lake City, Utah. Wilbur E. Figgins (Retired) and Alexander R. Smith. Fourth Revision, March 1989. (PB89 180624/AS) An Automatic Lighthning Detection System in Northern California. James E. Rea and Chris E. Fontana, June 1980. (PB80 22552)
- L. Fontana, June 1980. (FBS0 22002) Regression Equation for the Peak Wind Gost 6 to 12 Hours in Advance at Great Falls During Strong Downalope Wind Storma. Michael J. Oard, July 1980. (PB91 108367) A Raininges Index for the Arizona Monsoon. John H. Ten Harkel, July 1980. (PB81
- 106494)

- A raminess inder for the Arisma monscoll. Joint R. 1en rinrice, July 1860. (FDS) 106404) The Effects of Terrain Distribution on Summer Thunderstorm Activity at Renc, Nevada. Christopher Dean Hill, July 1980. (FBS) 102201) An Operational Evaluation of the Scafield/Oliver Technique for Estimating Precipitation Rates from Satellite Imagery. Richard Ochos, Angust 1980. (FBS) 108277) Eastern North Pacific Tropical Cyclone Occurrences During Intrasessonal Periods. Preston W. Leftwich and Gail M. Brown, February 1981. (FBS) 205494) Solar Radiation as a Sole Source of Energy for Photovoltaics in Las Vegas, Nevada, for July and December. Darryl Randerson, April 1981. (FBS) 205494) Solar Radiation as a Sole Source of Energy for Photovoltaics in Las Vegas, Nevada, for July and December. Darryl Randerson, April 1981. (FBS) 224503) A Systems Approach to Real-Time Runoff Analysis with a Deterministic Rainfall-Runoff Model, Robert J.C. Burnah and R. Larry Ferral, April 1981. (FBS) (22495) A Comparison of Two Methods for Forecasting Thunderstorms at Luke Air Force Base, Arizona. LTC Keith R. Cooley, April 1981. (FBS) 225593)

- Arizona. LTC Keith R. Cooley, April 1981. (PB31 225393) An Objective Aid for Forecasting Afternoon Relative Humidity Along the Washington Cascade East Slopes. Robert S. Robinson, April 1981. (PB81 23078) Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricanes 1980. Emil B. Gunther and Staff, May 1981. (PB82 23036) Preliminary Estimates of Wind Power Potential at the Newade Test Site. Howard G. Booth, June 1082. (PB80 2010)
- Preliminary Estimates of Wind Power Potential at the Nevada Test Site. Howard G. Booth, June 1981. (PB82 127036) ARAP User's Guide. Mark Mathewson, July 1981, Revised September 1981. (PB82 196783) Forecasting the Onset of Cosstal Gaies Off Washington-Oregon. John R. Zimmerman and William D. Burton, August 1981. (PB82 127061) A Statistical-Dynamical Model for Prediction of Tropical Cyclone Motion in the Eastern North Pacific Ocean. Preston W. Leftwich, Jr., October 1981. (PB82 195298) An Enhanced Plotter for Surface Airways Observations. Andrew J. Spry and Jeffrey L. Anderson, October 1981. (PB82 153883) Verification of 72-Hour 500-MB Map-Type Predictions. R.F. Quiring, November 1981. (PB82 16806a)

- (PR82 159098)
- 172 Forecasting Heavy Snow at Wenatches, Washington. James W. Holcomb, December 1981. (PR82 177789) Central San Joaquin Valley Type Maps. Thomas R. Crossan, December 1981. (PB82
- 064)
- 186064) ARAP Test Results. Mark A. Mathewson, December 1981. (PB82 198103) Approximations to the Peak Surface Wind Guats from Desert Thunderstorms. Darryl Randerson, June 1982. (PB82 253089) Climate of Phoenix, Arisona. Robert J. Schmidli, April 1969 (Revised December 1986).
- (PB87 142063/AS)
- (PBS7 142063/AS) Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricance 1962. E.B. Gunther, June 1963. (PB65 106078) Stratified Maximum Temperature Relationships Between Sinteen Zone Stations in Arisona and Respective Kay Stations. In: S. Bernner, June 1963. (PBS 249041) Standard Hydrologic Exchange Format (SHEF) Version I. Phillip A. Pasteries, Vernon C. Bissel, David G. Bennert, August 1983. (PBS5 106082) Quantitative and Spacial Distribution of Winter Precipitation along Utah's Wasatch Front. Levrence B. Dunn, August 1983. (PB85 106912) 500 Milliber Sign Frequency Teleconnection Charts Winter. Lewrence B. Dunn, December 1903. (PB85 106276)

- 1963. (PB65 105276) 500 Milliber Sign Frequency Teleconnection Charts Spring. Lewrence B. Dunn, January 1964. (PB65 111267) Collection and Use of Lightning Strike Data in the Western U.S. During Summer 1963. Gienn Rasch and Mark Mathewson, February 1984. (PB65 110534) 500 Milliber Sign Frequency Teleconnection Charts Summer. Lewrence B. Dunn, March 1984. (PB65 111359) Annual Data and Verification Tabulation sestern North Pacific Tropical Storms and Annual Data and Verification Tabulation Sestern North Pacific Tropical Storms and 1984. (PB85 111359) Annual Data and Varification Tabulation eastern North Pacific Tropical Storms and Hurricanes 1983. E.B. Gunther, March 1984. (PB85 109636) 500 Milliber Sign Frequency Teleconnection Charts - Fall. Levrence B. Dunn, May 1984. (PB85 110930) The Visco Statement of Statement of Statement S
- The Use and Interpretation of Isentropic Analyses. Jeffrey L. Anderson, October 1984.
- The Use and interpretation to areas of the sector North Pacific Tropical Storms and Annual Data & Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1984. E.B. Gunther and R.L. Cross, April 1985. (PB85 1878887AS) Great Salt Lake Effect Snowfall: Some Notes and An Example. David M. Carpenter,

- Hurriennes 1984. E.B. Gunther and H.L. Cross, April 1985. (F1885 187887687.) Great Sait Lake Effect Scowfall: Some Notes and An Example. Devid M. Carpenter, October 1985. (PB86 119153/AS) Large Scale Patterns Associated with Major Freeze Episodes in the Agricultural Southwest. Ronald S. Hamilton and Glenn R. Lussky, December 1985. (F1886 14474AS) NWR Voice Synthesis Project: Phase I. Glen W. Sampson, January 1986. (F1886 146504/AS) The MCC An Overriew and Case Study on Its Impact in the Western United States. Glenn R. Lussky, March 1986. (F1865 170651/AS) Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanse 1985. E.B. Gunther and R.L. Cross, March 1986. (F1866 170641/AS) Redid Interpretation Guidelines. Roger G. Papas, March 1986. (F1866 170641/AS) Amisonale Convective Complex Type Storm over the Desert Southwest. Duryl Randerson, April 1986. (F1865 19098/AS) The Effects of Eastern North Pacific Tropical Oyclones on the Southwestern United States. Weiter Smith, August 1986. (F187 1061364) States. Weiter Smith, August 1986. (F187 1061364) Hasny Rains and Flooding in Montana; A Case for Slantwise Convection. Glenn R. Lussky, April 1987. (F187 186229/AS)
- April 1967. (PB87 185229/AS)

Annual Data and Verification Tabulation Eastern North Pacific Tropical Storn Hurricanas 1966. Reger L. Cress and Kenneth B. Mielke, September 1967. 110605(AS) ns st (PBs

- ensive Solution for the Mass Distribution of Satellite Images. Glan W. Same An Ine
- and George Clark. September 1967. (P288 1144038/AS) Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms an Hurrisones 1987. Roger L. Cross and Kenneth B. Mielke, September 1968.
- Hurrisons 1861. Roger & Couss and Hamber D. Maker, September 1966. (PS88 101385/AS) An Investigation of the 24 September 1966 'Cold Sector' Tornado Outbreak in Norther California. John P. Monteverdi and Scott A. Braun, October 1968. (PS89 121287/AS)

- Cantorinal State 7. Balancesch and Schit F. Manin, Conter Foc. (PE80 12187/AS) Preliminary Analysis of Cloud-To-Ground Lightning in the Visinity of the Newada Test Sit Carven Socti, November 1968. (PE80 125649/AS) Forecast Guidalines For Fire Weather and Forecastars How Nighttime Humidity Affec Wildland Fusis. David W. Geens, February 1969. (PB69 182549/AS) A Collection of Papers Related to Heavy Precipitation Forecasting. Western Regic Headquarters, Scientific Services Division, August 1969. (PB69 230833/AS) The Las Vegas McCarran International Airport Microburst of August 8, 1989. Carven A Scott, June 1960. (PB90-240265) Metacorological Factors Contributing to the Canyon Creek Fire Blowup, September 6 and 1968. David W. Geens, June 1990. (PB90-240686) Stratus Surge Prediction Along the Central Californis Coast. Peter Felsch and Woodro Whilatch, December 1990. (PB91-123239)

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications.

PROFESSIONAL PAPERS--Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS--Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS--Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc. TECHNICAL SERVICE PUBLICATIONS--Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS--Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS--Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from: NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE

5285 PORT ROYAL ROAD

SPRINGFIELD, VA 22161